Effects of blood-flow restricted resistance training on mechanical muscle function and thigh lean mass in sIBM patients

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Accepted author manuscript, 12.3 MB, PDF document

Sporadic inclusion body myositis (sIBM) is an idiopathic inflammatory muscle disease associated with skeletal muscle inflammation and a parallel progressive decline in muscle strength and physical function. Eventually, most sIBM patients require use of wheelchair after about 10 years of diagnosis and assistance to perform activities of daily living. This study presents data from a randomized controlled intervention trial (NCT02317094) that examined the effect of 12 weeks low-load blood-flow restricted (BFR) resistance training on maximal muscle strength, power, rate of force development (RFD), thigh lean mass (TLM), and voluntary muscle activation (VA) in sIBM patients. A time-by-group interaction in knee extensor strength was observed in the stronger leg (p ≤ 0.033) but not the weaker leg. Within-group changes were observed with BFR training (BFR) manifested by increased knee extensor strength in the strongest leg (+13.7%, p = 0.049), whereas non-exercising patients (CON) showed reduced knee extensor strength (−7.7%, p = 0.018). Maximal leg extensor power obtained for the stronger leg remained unchanged following BFR training (+9.5%, p = 0.37) while decreasing in CON (−11.1%, p = 0.05). No changes in TLM were observed. VA declined post-training (p = 0.037) in both BFR (−6.3% points) and CON (−7.5% points). The present data indicate that BFR resistance training can attenuate the rate of decline in mechanical muscle function typically experienced by sIBM patients. The preservation of muscle mass and mechanical muscle function with BFR resistance training may be considered of high clinical importance in sIBM patients to countermeasure the disease-related decline in physical function.

Original languageEnglish
JournalScandinavian Journal of Medicine and Science in Sports
Volume32
Issue number2
Pages (from-to)359-371
Number of pages13
ISSN0905-7188
DOIs
Publication statusPublished - 2022

Bibliographical note

Publisher Copyright:
© 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

ID: 305693765