Genetic variation of COLEC10 and COLEC11 and association with serum levels of collectin liver 1 (CL-L1) and collectin kidney 1 (CL-K1)

Research output: Contribution to journalJournal articleResearchpeer-review

  • Rafael Bayarri-Olmos
  • Søren Hansen
  • Maiken Lumby Henriksen
  • Line Storm
  • Steffen Thiel
  • Garred, Peter
  • Lea Munthe-Fog

Collectin liver 1 (CL-L1, alias CL-10) and collectin kidney 1 (CL-K1, alias CL-11), encoded by the COLEC10 and COLEC11 genes, respectively, are highly homologous soluble pattern recognition molecules in the lectin pathway of complement. These proteins may be involved in anti-microbial activity and in tissue development as mutations in COLEC11 are one of the causes of the developmental defect syndrome 3MC. We studied variations in COLEC10 and COLEC11, the impact on serum concentration and to what extent CL-L1 and CL-K1 serum concentrations are correlated. We sequenced the promoter regions, exons and exon-intron boundaries of COLEC10 and COLEC11 in samples from Danish Caucasians and measured the corresponding serum levels of CL-L1 and CL-K1. The median concentration of CL-L1 and CL-K1 was 1.87 μg/ml (1.00-4.14 μg/ml) and 0.32 μg/ml (0.11-0.69 μg/ml), respectively. The level of CL-L1 strongly correlated with CL-K1 (ρ = 0.7405, P <0.0001). Both genes were highly conserved with the majority of variations in the non-coding regions. Three non-synonymous variations were tested: COLEC10 Glu78Asp (rs150828850, minor allele frequency (MAF): 0.003), COLEC10 Arg125Trp (rs149331285, MAF: 0.007) and COLEC11 His219Arg (rs7567833, MAF: 0.033). Carriers of COLEC10 Arg125Trp had increased CL-L1 serum levels (P = 0.0478), whereas promoter polymorphism COLEC11-9570C>T (rs3820897) was associated with decreased levels of CL-K1 (P = 0.044). In conclusion, COLEC10 and COLEC11 are highly conserved, which may reflect biological importance of CL-L1 and CL-K1. Moreover, the strong inter individual correlation between the two proteins suggests that a major proportion are found as heterooligomers or subjected to the same regulatory mechanisms.

Original languageEnglish
Article numbere0114883
JournalP L o S One
Volume10
Issue number2
Pages (from-to)1-12
Number of pages12
ISSN1932-6203
DOIs
Publication statusPublished - 2015

    Research areas

  • Collectins, Exons, Gene Frequency, Humans, Mutation, Missense, Polymorphism, Single Nucleotide, Promoter Regions, Genetic

ID: 161440916