Spontaneous contractions of the human thoracic duct—Important for securing lymphatic return during positive pressure ventilation?

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 929 KB, PDF document

The thoracic duct is responsible for the circulatory return of most lymphatic fluid. The return is a well-timed synergy between the pressure in the thoracic duct, venous pressure at the thoracic duct outlet, and intrathoracic pressures during respiration. However, little is known about the forces determining thoracic duct pressure and how these respond to mechanical ventilation. We aimed to assess human thoracic duct pressure and identify elements affecting it during positive pressure ventilation and a brief ventilatory pause. The study examined pressures of 35 patients with severe congenital heart defects undergoing lymphatic interventions. Thoracic duct pressure and central venous pressure were measured in 25 patients during mechanical ventilation and in ten patients during both ventilation and a short pause in ventilation. TD contractions, mechanical ventilation, and arterial pulsations influenced the thoracic duct pressure. The mean pressure of the thoracic duct was 16 ± 5 mmHg. The frequency of the contractions was 5 ± 1 min−1 resulting in an average increase in pressure of 4 ± 4 mmHg. During mechanical ventilation, the thoracic duct pressure correlated closely to the central venous pressure. TD contractions were able to increase thoracic duct pressure by 25%. With thoracic duct pressure correlating closely to the central venous pressure, this intrinsic force may be an important factor in securing a successful return of lymphatic fluid. Future studies are needed to examine the return of lymphatic fluid and the function of the thoracic duct in the absence of both lymphatic complications and mechanical ventilation.

Original languageEnglish
Article numbere15258
JournalPhysiological Reports
Volume10
Issue number10
ISSN2051-817X
DOIs
Publication statusPublished - 2022

Bibliographical note

Publisher Copyright:
© 2022 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.

    Research areas

  • congenital heart defects, lymphatic contractions, lymphatic intervention, lymphatic physiology, positive pressure ventilation

ID: 323982414