Right-left asymmetry in corticospinal tract microstructure and dexterity are uncoupled in late adulthood

Research output: Contribution to journalJournal articleResearchpeer-review

Ageing leads to a decline in white matter microstructure and dexterous function of the hand. In adolescents, it has previously been shown that the degree of right-left asymmetry in the corticospinal tract (CST) is linearly related with right-left asymmetry in dexterity. Here, we tested whether this association is also expressed in older adults. Participants completed a simple circle drawing task with their right and left hand as a measure of dexterity and underwent whole-brain diffusion weighted imaging at 3 Tesla (n = 199; aged 60–72 years). Fractional anisotropy and mean diffusivity of right and left CST were extracted from a manually defined region-of-interest. Linear regression analyses were computed to replicate the analyses in adolescents. Frequentist analyses were complemented with a Bayesian analytical framework. Outcome measures were compared with those previously reported in adolescents (aged 11–16 years). Asymmetries in white matter microstructure of the CST were evident and comparable to the degree of lateralisation observed in adolescence. Similarly, asymmetries in dexterity were evident, but to a lesser degree than in adolescents. Unlike in adolescents, we found no evidence of a linear relationship between asymmetries in CST microstructure and dexterity. Complementary Bayesian regression analysis provided moderate evidence in favour of the null hypothesis, pointing towards a lack of association between the structural and functional measures of right-left asymmetry. Our findings are compatible with the notion that, by late adulthood, a diverging impact of age on white matter structure and dexterous hand function dilutes the structure-function relationship between CST microstructure and manual proficiency that has been reported in adolescents.

Original languageEnglish
Article number118405
JournalNeuroImage
Volume240
ISSN1053-8119
DOIs
Publication statusPublished - 2021

Bibliographical note

Publisher Copyright:
© 2021

    Research areas

  • Ageing, Asymmetry, Corticospinal tract, Dexterity, Lateralisation, White matter

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 275771823