Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD. / Deco, Gustavo; Cruzat, Josephine; Cabral, Joana; Knudsen, Gitte M; Carhart-Harris, Robin L; Whybrow, Peter C; Logothetis, Nikos K; Kringelbach, Morten L.

In: Current biology : CB, Vol. 28, No. 19, 2018, p. 3065-3074.e6.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Deco, G, Cruzat, J, Cabral, J, Knudsen, GM, Carhart-Harris, RL, Whybrow, PC, Logothetis, NK & Kringelbach, ML 2018, 'Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD', Current biology : CB, vol. 28, no. 19, pp. 3065-3074.e6. https://doi.org/10.1016/j.cub.2018.07.083

APA

Deco, G., Cruzat, J., Cabral, J., Knudsen, G. M., Carhart-Harris, R. L., Whybrow, P. C., Logothetis, N. K., & Kringelbach, M. L. (2018). Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD. Current biology : CB, 28(19), 3065-3074.e6. https://doi.org/10.1016/j.cub.2018.07.083

Vancouver

Deco G, Cruzat J, Cabral J, Knudsen GM, Carhart-Harris RL, Whybrow PC et al. Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD. Current biology : CB. 2018;28(19):3065-3074.e6. https://doi.org/10.1016/j.cub.2018.07.083

Author

Deco, Gustavo ; Cruzat, Josephine ; Cabral, Joana ; Knudsen, Gitte M ; Carhart-Harris, Robin L ; Whybrow, Peter C ; Logothetis, Nikos K ; Kringelbach, Morten L. / Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD. In: Current biology : CB. 2018 ; Vol. 28, No. 19. pp. 3065-3074.e6.

Bibtex

@article{ebf222495553493aa07aabbc72c9e8f6,
title = "Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD",
abstract = "Understanding the underlying mechanisms of the human brain in health and disease will require models with necessary and sufficient details to explain how function emerges from the underlying anatomy and is shaped by neuromodulation. Here, we provide such a detailed causal explanation using a whole-brain model integrating multimodal imaging in healthy human participants undergoing manipulation of the serotonin system. Specifically, we combined anatomical data from diffusion magnetic resonance imaging (dMRI) and functional magnetic resonance imaging (fMRI) with neurotransmitter data obtained with positron emission tomography (PET) of the detailed serotonin 2A receptor (5-HT2AR) density map. This allowed us to model the resting state (with and without concurrent music listening) and mechanistically explain the functional effects of 5-HT2AR stimulation with lysergic acid diethylamide (LSD) on healthy participants. The whole-brain model used a dynamical mean-field quantitative description of populations of excitatory and inhibitory neurons as well as the associated synaptic dynamics, where the neuronal gain function of the model is modulated by the 5-HT2AR density. The model identified the causative mechanisms for the non-linear interactions between the neuronal and neurotransmitter system, which are uniquely linked to (1) the underlying anatomical connectivity, (2) the modulation by the specific brainwide distribution of neurotransmitter receptor density, and (3) the non-linear interactions between the two. Taking neuromodulatory activity into account when modeling global brain dynamics will lead to novel insights into human brain function in health and disease and opens exciting possibilities for drug discovery and design in neuropsychiatric disorders.",
author = "Gustavo Deco and Josephine Cruzat and Joana Cabral and Knudsen, {Gitte M} and Carhart-Harris, {Robin L} and Whybrow, {Peter C} and Logothetis, {Nikos K} and Kringelbach, {Morten L}",
note = "Copyright {\textcopyright} 2018 Elsevier Ltd. All rights reserved.",
year = "2018",
doi = "10.1016/j.cub.2018.07.083",
language = "English",
volume = "28",
pages = "3065--3074.e6",
journal = "Current Biology",
issn = "0960-9822",
publisher = "Cell Press",
number = "19",

}

RIS

TY - JOUR

T1 - Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD

AU - Deco, Gustavo

AU - Cruzat, Josephine

AU - Cabral, Joana

AU - Knudsen, Gitte M

AU - Carhart-Harris, Robin L

AU - Whybrow, Peter C

AU - Logothetis, Nikos K

AU - Kringelbach, Morten L

N1 - Copyright © 2018 Elsevier Ltd. All rights reserved.

PY - 2018

Y1 - 2018

N2 - Understanding the underlying mechanisms of the human brain in health and disease will require models with necessary and sufficient details to explain how function emerges from the underlying anatomy and is shaped by neuromodulation. Here, we provide such a detailed causal explanation using a whole-brain model integrating multimodal imaging in healthy human participants undergoing manipulation of the serotonin system. Specifically, we combined anatomical data from diffusion magnetic resonance imaging (dMRI) and functional magnetic resonance imaging (fMRI) with neurotransmitter data obtained with positron emission tomography (PET) of the detailed serotonin 2A receptor (5-HT2AR) density map. This allowed us to model the resting state (with and without concurrent music listening) and mechanistically explain the functional effects of 5-HT2AR stimulation with lysergic acid diethylamide (LSD) on healthy participants. The whole-brain model used a dynamical mean-field quantitative description of populations of excitatory and inhibitory neurons as well as the associated synaptic dynamics, where the neuronal gain function of the model is modulated by the 5-HT2AR density. The model identified the causative mechanisms for the non-linear interactions between the neuronal and neurotransmitter system, which are uniquely linked to (1) the underlying anatomical connectivity, (2) the modulation by the specific brainwide distribution of neurotransmitter receptor density, and (3) the non-linear interactions between the two. Taking neuromodulatory activity into account when modeling global brain dynamics will lead to novel insights into human brain function in health and disease and opens exciting possibilities for drug discovery and design in neuropsychiatric disorders.

AB - Understanding the underlying mechanisms of the human brain in health and disease will require models with necessary and sufficient details to explain how function emerges from the underlying anatomy and is shaped by neuromodulation. Here, we provide such a detailed causal explanation using a whole-brain model integrating multimodal imaging in healthy human participants undergoing manipulation of the serotonin system. Specifically, we combined anatomical data from diffusion magnetic resonance imaging (dMRI) and functional magnetic resonance imaging (fMRI) with neurotransmitter data obtained with positron emission tomography (PET) of the detailed serotonin 2A receptor (5-HT2AR) density map. This allowed us to model the resting state (with and without concurrent music listening) and mechanistically explain the functional effects of 5-HT2AR stimulation with lysergic acid diethylamide (LSD) on healthy participants. The whole-brain model used a dynamical mean-field quantitative description of populations of excitatory and inhibitory neurons as well as the associated synaptic dynamics, where the neuronal gain function of the model is modulated by the 5-HT2AR density. The model identified the causative mechanisms for the non-linear interactions between the neuronal and neurotransmitter system, which are uniquely linked to (1) the underlying anatomical connectivity, (2) the modulation by the specific brainwide distribution of neurotransmitter receptor density, and (3) the non-linear interactions between the two. Taking neuromodulatory activity into account when modeling global brain dynamics will lead to novel insights into human brain function in health and disease and opens exciting possibilities for drug discovery and design in neuropsychiatric disorders.

U2 - 10.1016/j.cub.2018.07.083

DO - 10.1016/j.cub.2018.07.083

M3 - Journal article

C2 - 30270185

VL - 28

SP - 3065-3074.e6

JO - Current Biology

JF - Current Biology

SN - 0960-9822

IS - 19

ER -

ID: 217396863