Oxidative stress in optic neuropathies
Research output: Contribution to journal › Review › Research › peer-review
Documents
- Fulltext
Final published version, 958 KB, PDF document
Increasing evidence indicates that changes in the redox system may contribute to the pathogenesis of multiple optic neuropathies. Optic neuropathies are characterized by the neurodegeneration of the inner-most retinal neurons, the retinal ganglion cells (RGCs), and their axons, which form the optic nerve. Often, optic neuropathies are asymptomatic until advanced stages, when visual impairment or blindness is unavoidable despite existing treatments. In this review, we describe systemic and, whenever possible, ocular redox dysregulations observed in patients with glaucoma, ischemic optic neuropathy, optic neuritis, hereditary optic neuropathies (i.e., Leber’s hereditary optic neuropathy and autosomal dominant optic atrophy), nutritional and toxic optic neuropathies, and optic disc drusen. We discuss aspects related to anti/oxidative stress biomarkers that need further investigation and features related to study design that should be optimized to generate more valuable and comparable results. Understanding the role of oxidative stress in optic neuropathies can serve to develop therapeutic strategies directed at the redox system to arrest the neurodegenerative processes in the retina and RGCs and ultimately prevent vision loss.
Original language | English |
---|---|
Article number | 1538 |
Journal | Antioxidants |
Volume | 10 |
Issue number | 10 |
Number of pages | 27 |
ISSN | 2076-3921 |
DOIs | |
Publication status | Published - 2021 |
Bibliographical note
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
- Glaucoma, Mitochondria, Optic disc drusen, Optic neuropathy, Oxidative stress, Redox dysregulations, Retinal ganglion cell
Research areas
Number of downloads are based on statistics from Google Scholar and www.ku.dk
ID: 281156683