Low levels of small HDL particles predict but do not influence risk of sepsis

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 2,12 MB, PDF-dokument

Background
Low levels of high-density lipoprotein (HDL) cholesterol have been associated with higher rates and severity of infection. Alterations in inflammatory mediators and infection are associated with alterations in HDL cholesterol. It is unknown whether the association between HDL and infection is present for all particle sizes, and whether the observed associations are confounded by IL-6 signalling.

Methods
In the UK Biobank, ~ 270,000 individuals have data on HDL subclasses derived from nuclear magnetic resonance analysis. We estimated the association of particle count of total HDL and HDL subclasses (small, medium, large, and extra-large HDL) with sepsis, sepsis-related death, and critical care admission in a Cox regression model. We subsequently utilised genetic data from UK Biobank and FinnGen to perform Mendelian randomisation (MR) of each HDL subclass and sepsis to test for a causal relationship. Finally, we explored the role of IL-6 signalling as a potential causal driver of changes in HDL subclasses.

Results
In observational analyses, higher particle count of small HDL was associated with protection from sepsis (Hazard ratio, HR 0.80; 95% CI 0.74–0.86, p = 4 × 10–9 comparing Quartile 4, highest quartile of HDL to Quartile 1, lowest quartile of HDL), sepsis-related death (HR 0.80; 95% CI 0.74–0.86, p = 2 × 10–4), and critical care admission with sepsis (HR 0.72 95% CI 0.60–0.85, p = 2 × 10–4). Parallel associations with other HDL subclasses were likely driven by changes in the small HDL compartment. MR analyses did not strongly support causality of small HDL particle count on sepsis incidence (Odds ratio, OR 0.98; 95% CI 0.89–1.07, p = 0.6) or death (OR 0.94, 95% CI 0.75–1.17, p = 0.56), although the estimate on critical care admission with sepsis supported protection (OR 0.73, 95% CI 0.57–0.95, p = 0.02). Bidirectional MR analyses suggested that increased IL-6 signalling was associated with reductions in both small (beta on small HDL particle count − 0.16, 95% CI − 0.10 to − 0.21 per natural log change in SD-scaled CRP, p = 9 × 10–8).and total HDL particle count (beta − 0.13, 95% CI − 0.09 to − 0.17, p = 7 × 10–10), but that the reverse effect of HDL on IL-6 signalling was largely null.

Conclusions
Low number of small HDL particles are associated with increased hazard of sepsis, sepsis-related death, and sepsis-related critical care admission. However, genetic analyses did not strongly support this as causal. Instead, we demonstrate that increased IL-6 signalling, which is known to alter infection risk, could confound associations with reduced HDL particle count, and suggest this may explain part of the observed association between (small) HDL particle count and sepsis.
OriginalsprogEngelsk
Artikelnummer389
TidsskriftCritical Care
Vol/bind27
Udgave nummer1
Antal sider19
ISSN1364-8535
DOI
StatusUdgivet - 2023

Bibliografisk note

Funding Information:
FH’s time was funded by the GW4-CAT Wellcome Doctoral Fellowship Scheme. UK Biobank was funded by the Wellcome Trust, the Medical Research Council, the NIHR, and a variety of other charities ( https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/our-funding ). FinnGen is a public–private partnership ( https://www.finngen.fi/en/access_results ) funded by multiple institutions across Finland. The authors want to acknowledge the participants and investigators of the FinnGen study. PGs time was funded by the Ser Cymru programme, the Welsh Government, and the EU-ERDF. FH and GDS work within the MRC Integrative Epidemiology Unit at the University of Bristol, which is supported by the Medical Research Council (MC_UU_00011/1). This research was funded in whole, or in part, by the Wellcome Trust [222894/Z/21/Z]. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

Publisher Copyright:
© 2023, BioMed Central Ltd., part of Springer Nature.

ID: 374045392