Myelin Basic Protein-Induced Production of Tumor Necrosis Factor-α and Interleukin-6, and Presentation of the Immunodominant Peptide MBP85-99 by B Cells from Patients with Relapsing-Remitting Multiple Sclerosis

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

B cells are involved in driving relapsing-remitting multiple sclerosis (RRMS), as demonstrated by the positive effect of therapeutic B-cell depletion. Aside from producing antibodies, B cells are efficient antigen-presenting and cytokine-secreting cells. Diverse polyclonal stimuli have been used to study cytokine production by B cells, but here we used the physiologically relevant self-antigen myelin basic protein (MBP) to stimulate B cells from untreated patients with RRMS and healthy donors. Moreover, we took advantage of the unique ability of the monoclonal antibody MK16 to recognize the immunodominant peptide MBP85-99 presented on HLA-DR15, and used it as a probe to directly study B-cell presentation of self-antigenic peptide. The proportions of B cells producing TNF-α or IL-6 after stimulation with MBP were higher in RRMS patients than in healthy donors, indicating a pro-inflammatory profile for self-reactive patient B cells. In contrast, polyclonal stimulation with PMA + ionomycin and MBP revealed no difference in cytokine profile between B cells from RRMS patients and healthy donors. Expanded disability status scale (EDSS) as well as multiple sclerosis severity score (MSSS) correlated with reduced ability of B cells to produce IL-10 after stimulation with MBP, indicative of diminished B-cell immune regulatory function in patients with the most severe disease. Moreover, EDSS correlated positively with the frequencies of TNF-α, IL-6 and IL-10 producing B cells after polyclonal stimulation. Patient-derived, IL-10-producing B cells presented MBP85-99 poorly, as did IL-6-producing B cells, particulary in the healthy donor group. B cells from MS patients thus present antigen to T cells in a pro-inflammatory context. These findings contribute to understanding the therapeutic effects of B-cell depletion in human autoimmune diseases, including MS.

OriginalsprogEngelsk
Artikelnummere0146971
TidsskriftPLOS ONE
Vol/bind11
Udgave nummer1
Antal sider13
ISSN1932-6203
DOI
StatusUdgivet - jan. 2016

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 179353683